首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63224篇
  免费   5233篇
  国内免费   2727篇
电工技术   3567篇
技术理论   7篇
综合类   4213篇
化学工业   10635篇
金属工艺   3535篇
机械仪表   3923篇
建筑科学   5389篇
矿业工程   1826篇
能源动力   1869篇
轻工业   4014篇
水利工程   1146篇
石油天然气   4421篇
武器工业   450篇
无线电   6992篇
一般工业技术   7903篇
冶金工业   3012篇
原子能技术   718篇
自动化技术   7564篇
  2024年   103篇
  2023年   971篇
  2022年   1422篇
  2021年   2294篇
  2020年   1839篇
  2019年   1590篇
  2018年   1829篇
  2017年   2059篇
  2016年   1858篇
  2015年   2345篇
  2014年   3191篇
  2013年   3647篇
  2012年   4086篇
  2011年   4423篇
  2010年   3879篇
  2009年   3686篇
  2008年   3609篇
  2007年   3509篇
  2006年   3564篇
  2005年   3082篇
  2004年   2088篇
  2003年   1874篇
  2002年   1641篇
  2001年   1584篇
  2000年   1628篇
  1999年   1739篇
  1998年   1367篇
  1997年   1154篇
  1996年   1033篇
  1995年   931篇
  1994年   763篇
  1993年   546篇
  1992年   423篇
  1991年   335篇
  1990年   311篇
  1989年   223篇
  1988年   171篇
  1987年   102篇
  1986年   98篇
  1985年   54篇
  1984年   39篇
  1983年   20篇
  1982年   32篇
  1981年   22篇
  1980年   13篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
In this study, the inhibition of an alginate-based edible coating (EC) containing thyme oil (0.05%, 0.35% and 0.65%) was evaluated against Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus and Escherichia coli O157:H7 inoculated onto fresh-cut apples. To investigate the antibacterial mechanism of thyme oil, the constituent compounds of that were analysed by gas chromatography-mass spectrometry (GC-MS), and the cellular damage of pathogens was observed by scanning electron microscopy (SEM). Results showed that alginate-based EC containing thyme oil effectively inhibited the growth of pathogens on fresh-cut apples. GC-MS analysis revealed thymol (47.23%) as the major compounds in thyme oil. SEM showed that the cell membrane of foodborne pathogens was damaged by thyme oil, causing their inactivation. Treatment with alginate-based EC containing 0.05% thyme oil preserved the sensory characteristics of fresh-cut apples. Therefore, using alginate-based EC with thyme oil may represent a potential approach to preserve and enhance the safety of fresh-cut apples.  相似文献   
92.
Element doping into the Cu2ZnSn(S,Se)4 (CZTSSe) absorber is an effective method to optimize the performance of thin film solar cells. In this study, the Cu2InxZn1-xSn(S,Se)4 (CIZTSSe) precursor film was deposited by magnetron cosputtering technique using indium (In) and quaternary Cu2ZnSnS4 (CZTS) as targets. Meanwhile, the In content was controlled using the direct current (DC) power on In target (PIn). A single kesterite CIZTSSe alloy was formed by successfully doping a small number of In3+ into the main lattice of CZTSSe. The partial Zn2+ cations were substituted by In3+ ions, resulting in improving properties of CZTSSe films. Morphological analysis showed that large grain CIZTSSe films could be obtained by doping In. The well-distributed, smooth, and dense film was obtained when the PIn was 30 W. The band gap of CIZTSSe could be continuously adjusted from 1.27 to 1.05 eV as PIn increased from 0 to 40 W. In addition, the CIZTSSe alloy thin film at PIn = 30 W exhibited the best p-type conductivity with Hall mobility of 6.87 cm2V?1s?1, which is a potential material as the absorption layer of high-performance solar cells.  相似文献   
93.
Tissue regeneration in complex lesions such as the site of tumors, bacterial infection, and sites lacking blood vessels, has been a huge challenge. Therefore, developing bioactive implantable materials with multi-functional properties such as tumor destruction, bacteria growth inhibition, and angiogenesis promotion is of great significance. In this study, black CaO-SiO2-TiO2 (CST) glasses are prepared through the containerless melting approach, by which heterogeneous nucleation can be avoided and thereby glass formation becomes possible via fast quenching. This approach enables the formation of trivalent titanium (Ti3+) without using a reducing atmosphere or reducing agents. The black CST glasses are found in this study to possess a strong ability to inhibit bacteria and tumors by their excellent photothermal and photocatalytic effects. Strikingly, these glasses also promote the formation of blood vessels and accelerate the healing of chronic wounds by the synergistic effects of the photothermal effect and Si ions. Thus, this glass system can be a promising multi-functional material for tissue regeneration in complex lesions.  相似文献   
94.
95.
The development of high-efficiency adsorbents for heavy metal ion removal from wastewater is highly desirable and challenging due to their synthesis complexity and low adsorption capacities. Herein, we reported the synthesis of strontium (Sr) doped hydroxyapatite (HAp) for the increased Cr (VI) adsorption. The effects of pH, temperature, and time on adsorption performances were studied. As a result, the Sr-HAp nanorods can achieve a Cr (VI) adsorption capacity of 443 mg/g, which is significantly higher than that of HAp nanorods (318 mg/g). To better understand the adsorption mechanism, the Langmuir isotherm model was established. The modeling results indicated that Langmuir monolayer chemical adsorption contributed to the efficient Cr (VI) ion removal for Sr-HAp nanorods adsorbents. The surface area and surface functional groups (O–H) contributed to the different Cr (VI) adsorption capacities between HAp and Sr-HAp.  相似文献   
96.
Plant fiber reinforced polymer composites (PFRPs) in practical application are often subjected to both complex friction and variable temperature environments. The present work explores the possibility of reinforcing rice husk/polyvinyl chloride (RH/PVC) composites with basalt fibers (BF) for developing a new wear resistant material with improved thermal stability. The results showed that the structural strength and wear resistance of the composites increased at first and then decreased with an increasing ratio of BF/RH, the highest value occurred at a BF/RH ratio of 8/42. The thermal stability of composites had a positive relationship with BF/RH ratio. The composites added with BF all possessed improved performance in comparison with unadded composites. Hence, the findings of this article proposed some new perspectives on improving the wear resistance and thermal stability of PFRPs that would broaden their practical application.  相似文献   
97.
The realization of liquid metal-based wearable systems will be a milestone toward high-performance, integrated electronic skin. However, despite the revolutionary progress achieved in many other components of electronic skin, liquid metal-based flexible sensors still suffer from poor sensitivity due to the insufficient resistance change of liquid metal to deformation. Herein, a nacre-inspired architecture composed of a biphasic pattern (liquid metal with Cr/Cu underlayer) as “bricks” and strain-sensitive Ag film as “mortar” is developed, which breaks the long-standing sensitivity bottleneck of liquid metal-based electronic skin. With 2 orders of magnitude of sensitivity amplification while maintaining wide (>85%) working range, for the first time, liquid metal-based strain sensors rival the state-of-art counterparts. This liquid metal composite features spatially regulated cracking behavior. On the one hand, hard Cr cells locally modulate the strain distribution, which avoids premature cut-through cracks and prolongs the defect propagation in the adjacent Ag film. On the other hand, the separated liquid metal cells prevent unfavorable continuous liquid-metal paths and create crack-free regions during strain. Demonstrated in diverse scenarios, the proposed design concept may spark more applications of ultrasensitive liquid metal-based electronic skins, and reveals a pathway for sensor development via crack engineering.  相似文献   
98.
The materials processing history has a great influence on their properties and finally determines their application effect. In this paper, the ferroelectric, polarization-switching current, and strain properties of Mn-doped 0.75Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 ceramics were studied in fresh state, aged state, and poled state, respectively. Compared with the symmetric polarization-electric-field (P-E) hysteresis loops, current-density-electric-field (J-E) curves, and bipolar electric-field-induced strain (S-E) curves in fresh state samples, asymmetric P-E loops, J-E curves, and bipolar S-E curves were obtained in poled state samples. Well-aged-state samples exhibit double hysteresis P-E loop, four peaks J-E curves, and symmetric S-E curves without negative strain. The symmetry-conforming short-range order (SC-SRO) principle of point defects and internal electric field Ei is employed to clarify the different phenomenon of three states. Results indicated that randomly oriented defect polarization PD in aged samples can reverse the spontaneous polarization PS back and result in the double hysteresis P-E loop and four peaks J-E curves. The oriented PD and resulting Ei in poled-state samples will lead to the asymmetric loops and strain memory effect.  相似文献   
99.
Poly(2-oxazoline)s have excellent biocompatibility and have been used as FDA-approved indirect food additives. The inert property of the hydrophilic poly(2-oxazoline)s suggests them as promising substitutes for poly(ethylene glycol) (PEG) in various applications such as anti-biofouling agents. It was recently reported that poly(2-oxazoline)s themselves have antimicrobial properties as synthetic mimics of host defense peptides. These studies revealed the bioactive properties of poly(2-oxazoline)s as a new class of functional peptide mimics, by mimicking host defense peptides to display potent and selective antimicrobial activities against methicillin-resistant Staphylococcus aureus both in vitro and in vivo, without concerns about antimicrobial resistance. The high structural diversity, facile synthesis, and potent and tunable antimicrobial properties underscore the great potential of poly(2-oxazoline)s as a class of novel antimicrobial agents in dealing with drug-resistant microbial infections and antimicrobial resistance.  相似文献   
100.
Based on orthogonal experimental design (OED), the effects of the sintering pressure, sintering temperature and holding time on the mechanical properties of 50 vol% silicon carbide particle (SiCp)/2024Al composites prepared by spark plasma sintering (SPS) were investigated. The sintering pressure had the greatest effect on the density and bending strength of the material among these three factors, followed by sintering temperature and holding time. The optimised process conditions for producing the 50 vol% SiCp/2024Al were sintering at 550 °C for 5 min under 40 MPa, which resulted in a composite material with a density of 99.7% and good interface bonding with a comparatively high bending strength of 766.65 MPa. This work provides a promising method to produce high volume fraction composites that can meet high strength requirements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号